An extraordinary combination of material science, manufacturing processes, and innovative thinking spurred the development of SiGe heterojunction devices that offer a wide array of functions, unprecedented levels of performance, and low manufacturing costs. While there are many books on specific aspects of Si heterostructures, the Silicon Heterostructure Handbook: Materials, Fabrication, Devices, Circuits, and Applications of SiGe and Si Strained-Layer Epitaxy is the first book to bring all aspects together in a single source.

Featuring broad, comprehensive, and in-depth discussion, this handbook distills the current state of the field in areas ranging from materials to fabrication, devices, CAD, circuits, and applications. The editor includes “snapshots” of the industrial state-of-the-art for devices and circuits, presenting a novel perspective for comparing the present status with future directions in the field. With each chapter contributed by expert authors from leading industrial and research institutions worldwide, the book is unequalled not only in breadth of scope, but also in depth of coverage, timeliness of results, and authority of references. It also includes a foreword by Dr. Bernard S. Meyerson, a pioneer in SiGe technology.

Containing nearly 1000 figures along with valuable appendices, the Silicon Heterostructure Handbook authoritatively surveys materials, fabrication, device physics, transistor optimization, optoelectronics components, measurement, compact modeling, circuit design, and device simulation.
Contents continued...

pnGe SiGe HBTs; J.D. Cressler

Temperature Effects; J.D. Cressler

Radiation Effects; J.D. Cressler

Reliability Issues; J.D. Cressler

Self-Heating and Thermal Effects; J-S. Rieh

Device-Level Simulation; G. Niu

Performance Limits; G. Freeman, A. Stricker, J-S. Rieh, and D. Greenberg

HETEROSTRUCTURE FETs

Overview; J.D. Cressler

Biaxial Strained-Si CMOS; K. Rim

Uniaxial Stressed-Si MOSFETs; S.E. Thompson

SiGe-Channel HFETs; S. Banerjee

Industry Examples at The-State-of-the-Art: Intel 90 nm Logic Technologies; S.E. Thompson

OTHER HETEROSTRUCTURE DEVICES

Overview; J.D. Cressler

Resonant Tunneling Devices; S. Tsujino, D. Gratzmacher, and U. Gennser

IMPATT Diodes; E. Kasper and M. Oehme

Engineered Substrates for Electronic and Optoelectronic Applications; E.A. Fitzgerald

Self-Assembling Nanostructures in Ge(Si)/Si Heteroepitaxy; R. Hull

OPTOELECTRONIC COMPONENTS

Overview; J.D. Cressler

Si/SiGe LEDs; K.L. Wang, S. Tong, and H.J. Kim

Near Infrared Detectors; L. Colace, G. Masini, and G. Assanto

Si-Based Photonic Transitors for Integrated Optoelectronics; W-X. Ni and A. Eljifying

Si/SiGe Quantum Cascade Emitters; D.J. Paul

MEASUREMENT AND MODELING

Overview; J.D. Cressler

Best-Practice ac Measurement Techniques; R.A. Groves

Industrial Application of TCAD for SiGe Development; D.C. Sheridan, J.B. Johnson, and R. Krishnasamy

Compact Modeling of SiGe HBTs; HICUM; M. Schröter

Compact Modeling of SiGe HBTs; MEXTRAM; S. Mijalkovic

CAD Tools and Design Kits; S.E. Strang

Parasitic Modeling and Noise Mitigation Approaches in SiGe RF Designs; R. Singh

Transmission Lines on Si; Y.V. Tretiatkov

Improved De-Embedding Techniques; Q. Liang

CIRCUITS AND APPLICATIONS

Overview; J.D. Cressler

SiGe as an Enabler for Wireless Communications Systems; L.E. Larson and D.Y.C. Lie

LNA Optimization Strategies; Q. Liang

Linearization Techniques; L.N. de Vreede and M.P. van der Heijden

SiGe MMICs; H. Schunnacher

SiGe mm-Wave ICs; J-F. Luy

Wireless Building Blocks Using SiGe HBTs; J.R. Long

Direct Conversion Architectures for SiGe Radios; S. Chakraborty and J. Laskar

RF MEMS Techniques in Si/SiGe; J. Papapolymerou

Wideband Antennas on Si; M.M. Tentzeris and K. Li

Packaging Issues for SiGe Circuits; K. Lim, S. Pinel, and J. Laskar

Industry Examples at The-State-of-the-Art: IBM; D.J. Friedman and M. Meghelli

Industry Examples at The-State-of-the-Art: Hitachi; K. Washio

Industry Examples at The-State-of-the-Art: ST; D. Belot, et al.

APPENDICES

Properties of Si and Ge; J.D. Cressler

The Generalized Moll-Ross Relations; J.D. Cressler

Generalized Integral Charge Control Relations; M. Schröter

Sample SiGe HBT Compact Model Parameters; R.M. Malladi

INDEX