Silicon Earth: The Miracle of the Micro/Nanoelectronics Revolution

John D. Cressler

Ken Byers Professor
School of Electrical and Computer Engineering
777 Atlantic Drive, N.W., Georgia Institute of Technology
Atlanta, GA 30332-0250 USA
cressler@ece.gatech.edu / Tel (404) 894-5161
http://users.ece.gatech.edu/~cresslerl

The Information Age

A Functional Definition:

The "Information Age" is characterized by the acquisition, processing, manipulation, storage, and global exchange of information (knowledge).

Q: Why Age?
A: Civilization is profoundly defined by an historical "Age" (technology, but also: culture, commerce, art, politics, socialization, etc.)

Some Defining Features of the Information Age?

The Information Age

A Functional Definition:

The "Information Age" is characterized by the acquisition, processing, manipulation, storage, and global exchange of information (knowledge).

Q: Why Age?
A: Civilization is profoundly defined by an historical "Age" (technology, but also: culture, commerce, art, politics, socialization, etc.)

Some Defining Features of the Information Age:

- the ubiquitous computer

The Information Age

A Functional Definition:
The "Information Age" is characterized by the acquisition, processing, manipulation, storage, and global exchange of information (knowledge).

Q: Why Age?
A: Civilization is profoundly defined by an historical "Age" (technology, but also: culture, commerce, art, politics, socialization, etc.)

Some Defining Features of the Information Age:

- the ubiquitous computer (593,085,000 personal computers)
- the internet

The Information Age

A Functional Definition:

The "Information Age" is characterized by the acquisition, processing, manipulation, storage, and global exchange of information (knowledge).

Q: Why Age?
A: Civilization is profoundly defined by an historical "Age" (technology, but also: culture, commerce, art, politics, socialization, etc.)

Some Defining Features of the Information Age:

- the ubiquitous computer (593,085,000 personal computers)
- the internet (687,593,600 internet users)
- wired and wireless communications
- microprocessors in everything

A Bit of Trivia ...

How Much Information Flow Occurred Electronically Last Year?

And The Answer Is

There Was Approximately

17,905,340,000,000,000,000,000 bytes (17,905,340 Terabytes = 17.9 Exabytes)

Of Information Moved On Planet Earth!

For Comparison:

- the entire print collection of Library of Congress $=10$ Terabytes!
- a DVD holds 4.7 Gigabytes!
- one typewritten page takes 2 kilobytes!

The Information Age

Some Facts:

- The Information Age exists ONLY because of the virtues of a particular class of materials called semiconductors
- Silicon is the most important semiconductor (\$200B)

Some Facts About Silicon (Si):

- Si is a Group IV element, and crystallizes in the diamond structure
- Perfect Si crystals can be grown very large (12 inches by 8 feet!)
- \quad Si can be made extremely pure (< . 000001 ppm impurities!)
- \quad Si is very abundant and non-toxic (70\% of the earth's crust are silicates!)
- \quad Si oxidizes trivially to form one of nature's most perfect insulators $\left(\mathrm{SiO}_{2}\right)$
- $\quad \mathrm{Si}$ is a great conductor of heat (better than many metals!)

300 mm, 2005

The Information Age

Some Facts:

- The Information Age Exists ONLY because of the virtues of a particular class of materials called semiconductors
- \quad Silicon is the most important semiconductor (\$200B)
- Silicon can be cleverly manipulated to perform many modern miracles

The State-of-the-art in Microelectronics (2007):

- 4,000 MHz 64 bit $\mu \mathrm{P}$ (uses 200,000,000 transistors!)
- 16Gbit $(16,000,000,000)$ DRAM on a single Si chip

Some Questions You Should Be Asking:
How have we accomplished this?
How will civilization, and our lives, be changed forever as a result?
What are the limits? Where will it end?

Cressler's PC's

Year	Processor	Memory	Hard Drive
1992	33 MHz	4 M	128 M
1993	50 MHz	8 M	256 M
1995	100 MHz	16 M	512 M
1996	150 MHz	32 M	2.1G
1997	133 MHz	24 M	1.4G laptop!
1999	350 MHz	96 M	6.0G laptop (MMX)
2002	1600 MHz	512 M	30G laptop (DVD)
2004	2.4 GHz	1 G	60G laptop (wireless)
$04 / 92$	72 x	$250 x$	468 x

And ... my 1992 PC and my 2004 laptop cost the same!

Moore's Law (1965)

Georgialnstitute of Tech oology

Moore's Law:

The defining features of the integrated circuit technology follow an exponential growth pattern over time.
Moral: Computing power \uparrow and cost \downarrow exponentially!

Examples: $\mu \mathrm{P}$ speed, logic gates, memory density, lithography, cost, etc.

Examples

Georgialnstitute
 of Tech oology

after G. Moore

Examples

A Concrete Example

What a Model T Ford would look like today, if it had improved at the same rate as computer technology ($2 x$ per 18 months)?

Parameter	Model T (1913)	Today	
Speed (mph)	50		145,361,703,700,000,000,000,350,000
Efficiency (mpg)	20		$58,144,681,470,000,000,000$
Cost $(1993 \$)$	20,000		$0.000,000,000,000,006,88$
Mass (kg)	1,000		$0.000,000,000,000,000,343$
Luggage $\left(\mathrm{ft}^{3}\right)$	18	$52,330,213,320,000,000,000$	

1913 Ford
Model-T Runabout

A Bit of Trivia ...

What Date Marks
 The Birth Of The Information Age?

The Invention of the Transistor by: Shockley, Brattain, and Bardeen at Bell Labs

When?

And The Answer Is ...

The Invention of the Transistor by: Shockley, Brattain, and Bardeen at Bell Labs

1947

And The Answer Is ...

The Invention of the Transistor by: Shockley, Brattain, and Bardeen at Bell Labs

December 23 ${ }^{\text {rd }}, 1947$

And The Answer Is ...

The Invention of the Transistor by: Shockley, Brattain, and Bardeen at Bell Labs

December 23rd, 1947

... at 5:00 pm

The First Transistor

Georgialnstiturie of Tech

Only 50 Years Later!

Georgialnstiture
offechnology

- DEC Alpha 21164 (1,000,000,000 instructions per second)
-9,300,000 transistors!

Some More Trivia!

How Many Transistors Are There

On Planet Earth?

???

The Number's Game

In 2007, There Are Approximately

10,000,000,000,000,000,000 $\left(1 \times 10^{19}\right)$

Transistors On Planet Earth!

For Comparison:

- the universe is about $4.2 \times 10^{17} \mathrm{sec}$ old (13.7 billion years)!
- there are about 1×10^{21} stars in the universe!
- the universe is about 4×10^{23} miles across (15 billion light-years)!

The Number's Game

Georgia
 of Tech oology

From 0 Transistors to
 10,000,000,000,000,000,000 ... in only 60 years!

The Number's Game

That Is Roughly ...

1,538,461,538 Transistors

For Every Person on Planet Earth!

The Number's Game

And ... You Could Hold Those

1,538,461,538 Transistors

In The Palm Of Your Hand!

A Deeper Look
 Georgialnstiture of Tech ology

How?

Redefining Fast \& Small

Georgialnstiture of Tech ology

Our Digital World:

- A "transistor" is simply a very tiny, very fast on/off switch (" 1 " or " 0 ")
- In 2006, one transistor is about 0.10 microns (100 nm) wide

The Size of Transistors:

- The wavelength of visible light is 0.4-0.7 microns.
- 4 transistors could fit inside one wavelength of blue light!

The Speed of Transistors:

- This 0.10 micron transistor can switch from a logical "1" (on) to a logical "0" (off) in about 10 picoseconds (0.00000000001 seconds).
- For comparison, light (186,000 miles/sec) travels only 3 mm during the time it takes to switch this transistor from a " 1 " to a "0"

A Silicon IC Zoom In ...

Georgialnstitute of Technologyy

A Closer View

Georgialnstitutie
 of Technology

A Closer View

Georgialnstifute of Tech

Georgia of Tech

Mr. Transistor

Georgialnsifurte oftech nollogy

Inside Mr. Transistor

Georgialnstitufe of Tech

Universal Distance Scale

Georgialnstituke of Tech ologyy

Universal Time Scale

Where Will It All End?

Georgialnstitute of Tech

- Semiconductor Industry Association Projections (ITRS Roadmap)

Metric
 Transistor Size
 Memory Bits / Chip
 Logic Transistor Count / Chip
 Number of I/O's
 Power Supply Voltage

In 2011
$0.05 \mu \mathrm{~m}$ (< 100 atoms)
$16,000,000,000$ bits
100,000,000 devices
4,800 I/O pins
0.6 V

What's on the Horizon?
Data Bandwidth:
$40 \mathrm{~Gb} / \mathrm{sec}$ electronics +128 colors $=1,500,000,000,000 \mathrm{bits} / \mathrm{sec}(1.5 \mathrm{~Tb} / \mathrm{sec})$ on one optical fiber line
Bandgap Engineering of Electronic Devices:
Mix different semiconductors together at the atomic level to speed them up (SiGe)

Quantum Effect Devices:

Store information on a single electron!
Molecular Electronics:
Biologically-inspired computing and the silicon / tissue interface (living machines?)

ECE and Microelectronics Georgialnstitute ECE and Microelectronics ofitechnology

The Major ECE Sub-Disciplines:

Microsystems: IC device and circuit fabrication, MEMS, IC packaging, nanotechnology ...
Electronic Design: amplifiers, analog, digital, and RF integrated circuits ...
Signal Processing: information extraction, data compression, coding, error correction ...
Communications: wired and wireless data transmission, signal modulation ...
Control Systems: feedback techniques for process control, motor control, aerodynamics ..
Electromagnetics: generating and receiving electromagnetic waves, antennas, radar ...
Power Systems: generation, transmission, and distribution of electrical power ...
Computer Engineering: architecture, VLSI design, verification and test, CAD ...
Biomedical Engineering: ECE + biology for health care, nanotechnology, etc ...
Photonics: generating, transmitting, and receiving optical signals

Moral: ALL sub-disciplines of ECE require microelectronics!

Food For Thought ...

We Predict The Future ... By Inventing It.

Motto of Xerox PARC

