

Silicon Earth: The Miracle of the Micro/Nanoelectronics Revolution

John D. Cressler

Ken Byers Professor School of Electrical and Computer Engineering 777 Atlantic Drive, N.W., Georgia Institute of Technology Atlanta, GA 30332-0250 USA cressler@ece.gatech.edu / Tel (404) 894-5161 <u>http://users.ece.gatech.edu/~cressler/</u>

The "Information Age" is characterized by the acquisition, processing, manipulation, storage, and global exchange of information (knowledge).

- **Q:** Why Age?
- A: Civilization is profoundly defined by an historical "Age" (technology, but also: culture, commerce, art, politics, socialization, etc.)

Some Defining Features of the Information Age?

The "Information Age" is characterized by the acquisition, processing, manipulation, storage, and global exchange of information (knowledge).

Q: Why Age?

A: Civilization is profoundly defined by an historical "Age" (technology, but also: culture, commerce, art, politics, socialization, etc.)

Some Defining Features of the Information Age:

• the ubiquitous computer

The "Information Age" is characterized by the acquisition, processing, manipulation, storage, and global exchange of information (knowledge).

Q: Why Age?

A: Civilization is profoundly defined by an historical "Age" (technology, but also: culture, commerce, art, politics, socialization, etc.)

Some Defining Features of the Information Age:

- the ubiquitous computer (593,085,000 personal computers)
- the internet

The "Information Age" is characterized by the acquisition, processing, manipulation, storage, and global exchange of information (knowledge).

Q: Why Age?

A: Civilization is profoundly defined by an historical "Age" (technology, but also: culture, commerce, art, politics, socialization, etc.)

Some Defining Features of the Information Age:

- the ubiquitous computer (593,085,000 personal computers)
- the internet (687,593,600 internet users)
- wired and wireless communications
- microprocessors in everything

How Much Information Flow Occurred Electronically Last Year?

There Was Approximately

17,905,340,000,000,000,000,000 bytes (17,905,340 Terabytes = 17.9 Exabytes)

Of Information Moved On Planet Earth!

For Comparison:

- the entire print collection of Library of Congress = 10 Terabytes!
- a DVD holds 4.7 Gigabytes!
- one typewritten page takes 2 kilobytes!

The Information Age

Some Facts:

- The Information Age exists ONLY because of the virtues of a particular class of materials called <u>semiconductors</u>
- <u>Silicon</u> is the most important semiconductor (\$200B)

Some Facts About Silicon (Si):

- Si is a Group IV element, and crystallizes in the diamond structure
- Perfect Si crystals can be grown very large (12 inches by 8 feet!)
- Si can be made extremely pure (< .000001 ppm impurities!)
- Si is very abundant and non-toxic (70% of the earth's crust are silicates!)
- Si oxidizes trivially to form one of nature's most perfect insulators (SiO₂)
- Si is a great conductor of heat (better than many metals!)

The Information Age

Some Facts:

- The Information Age Exists **ONLY** because of the virtues of a particular class of materials called <u>semiconductors</u>
- **<u>Silicon</u>** is the most important semiconductor (\$200B)
- <u>Silicon</u> can be cleverly manipulated to perform many modern miracles

The State-of-the-art in Microelectronics (2007):

- 4,000 MHz 64 bit µP (uses 200,000,000 transistors!)
- 16Gbit (16,000,000,000) DRAM on a single Si chip

Some Questions <u>You</u> Should Be Asking:

How have we accomplished this? How will civilization, and our lives, be changed forever as a result? What are the limits? Where will it end?

Year	Processor	Memory	Hard Drive
1992	33 MHz	4M	128M
1993	50 MHz	8M	256M
1995	100 MHz	16M	512M
1996	150 MHz	32M	2.1G
1997	133 MHz	24M	1.4G laptop!
1999	350 MHz	96M	6.0G laptop (MMX)
2002	1600 MHz	512M	30G laptop (DVD)
2004	2.4 GHz	1G	60G laptop (wireless)

04/9272x250x468xAnd ... my 1992 PC and my 2004 laptop cost the same!... How Has This Been Possible??

Moore's Law:

The defining features of the integrated circuit technology follow an **exponential** growth pattern over time.

Moral: Computing power 1 and cost 4 <u>exponentially</u>!

Examples: µP speed, logic gates, memory density, lithography, cost, etc.

Georgia Institute of Technology

What a Model T Ford would look like today, if it had improved at the same rate as computer technology (2x per 18 months)?

Parameter	<u>Model T (1913)</u>	<u>Today</u>
Speed (mph)	50	145,361,703,700,000,000,000,350,000
Efficiency (mpg)	20	58,144,681,470,000,000,000
Cost (1993 \$)	20,000	0.000,000,000,000,006,88
Mass (kg)	1,000	0.000,000,000,000,000,343
Luggage (ft ³)	18	52,330,213,320,000,000,000

1913 Ford Model-T Runabout

What Date Marks The Birth Of The Information Age?

The Invention of the Transistor by: Shockley, Brattain, and Bardeen at Bell Labs

When?

The Invention of the Transistor by: Shockley, Brattain, and Bardeen at Bell Labs

1947

The Invention of the <u>Transistor</u> by: Shockley, Brattain, and Bardeen at Bell Labs

December 23rd, 1947

The Invention of the Transistor by: Shockley, Brattain, and Bardeen at Bell Labs

December 23rd, 1947

... at 5:00 pm

The First Transistor

Only 50 Years Later!

DEC Alpha 21164 (1,000,000,000 instructions per second)
9,300,000 transistors!

How Many Transistors Are There

On Planet Earth?

???

In 2007, There Are Approximately

10,000,000,000,000,000,000,000 (1x10¹⁹)

Transistors On Planet Earth!

For Comparison:

- the universe is about 4.2x10¹⁷ sec old (13.7 billion years)!
- there are about 1×10^{21} stars in the universe!
- the universe is about 4x10²³ miles across (15 billion light-years)!

That Is Roughly ...

1,538,461,538 Transistors

For Every Person on Planet Earth!

And ... You Could Hold Those

1,538,461,538 Transistors

In The Palm Of Your Hand!

How ?

Redefining Fast & Small

Our Digital World:

- A "transistor" is simply a very tiny, very fast on/off switch ("1" or "0")
- In 2006, one transistor is about 0.10 microns (100 nm) wide

The Size of Transistors:

- The wavelength of visible light is 0.4 0.7 microns.
- 4 transistors could fit inside one wavelength of blue light!

The Speed of Transistors:

- This 0.10 micron transistor can switch from a logical "1" (on) to a logical "0" (off) in about 10 picoseconds (0.00000000001 seconds).
- For comparison, light (186,000 miles/sec) travels only 3 mm during the time it takes to switch this transistor from a "1" to a "0"

Georgialnst of Technolo

A Silicon IC Zoom In ...

John D. Cressler, 1/07

John D. Cressler, 1/07

A Closer View

Mr. Transistor

Inside Mr. Transistor

Universal Distance Scale

Georgialnsti of Technolo

Universal Time Scale

Where Will It All End?

Georgia Institute of Technology

• Semiconductor Industry Association Projections (ITRS Roadmap)

Metric Transistor Size Memory Bits / Chip Logic Transistor Count / Chip Number of I/O's Power Supply Voltage

In <u>2011</u> 0.05 µm (< 100 atoms) 16,000,000,000 bits 100,000,000 devices 4,800 I/O pins 0.6 V

What's on the Horizon?

Data Bandwidth:

40Gb/sec electronics + 128 colors = 1,500,000,000,000 bits/sec (1.5Tb/sec) on <u>one</u> optical fiber line

Bandgap Engineering of Electronic Devices:

Mix different semiconductors together at the atomic level to speed them up (SiGe)

Quantum Effect Devices:

Store information on a single electron!

Molecular Electronics:

Biologically-inspired computing and the silicon / tissue interface (living machines?)

ECE and Microelectronics Georgia Institute

The Major ECE Sub-Disciplines:

Microsystems: IC device and circuit fabrication, MEMS, IC packaging, nanotechnology ... Electronic Design: amplifiers, analog, digital, and RF integrated circuits ... Signal Processing: information extraction, data compression, coding, error correction ... Communications: wired and wireless data transmission, signal modulation ... Control Systems: feedback techniques for process control, motor control, aerodynamics ... Electromagnetics: generating and receiving electromagnetic waves, antennas, radar ... Power Systems: generation, transmission, and distribution of electrical power ... Computer Engineering: architecture, VLSI design, verification and test, CAD ... Biomedical Engineering: ECE + biology for health care, nanotechnology, etc ... Photonics: generating, transmitting, and receiving optical signals

Moral: ALL sub-disciplines of ECE require microelectronics!

We Predict The Future ... By Inventing It.

Motto of Xerox PARC